- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Eckhardt, André_K (2)
-
Kaiser, Ralf_I (2)
-
Turner, Andrew_M (2)
-
Chandra, Sankhabrata (1)
-
Kleimeier, N_Fabian (1)
-
Marks, Joshua_H (1)
-
Tarczay, György (1)
-
Wang, Jia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Glycinal (HCOCH2NH2) and acetamide (CH3CONH2) are simple molecular building blocks of biomolecules in prebiotic chemistry, though their origin on early Earth and formation in interstellar media remain a mystery. These molecules are formed with their tautomers in low temperature interstellar model ices upon interaction with simulated galactic cosmic rays. Glycinal and acetamide are accessed via barrierless radical‐radical reactions of vinoxy (⋅CH2CHO) and acetyl (⋅C(O)CH3), and then undergo keto‐enol tautomerization. Exploiting tunable photoionization reflectron time‐of‐flight mass spectroscopy and photoionization efficiency (PIE) curves, these results demonstrate fundamental reaction pathways for the formation of complex organics through non‐equilibrium ice reactions in cold molecular cloud environments. These molecules demonstrate an unconventional starting point for abiotic synthesis of organics relevant to contemporary biomolecules like polypeptides and cell membranes in deep space.more » « less
-
Chandra, Sankhabrata; Eckhardt, André_K; Turner, Andrew_M; Tarczay, György; Kaiser, Ralf_I (, Chemistry – A European Journal)Abstract The identification of silicon‐substituted, complex organics carrying multiple functional groups by classical infrared spectroscopy is challenging because the group frequencies of functional groups often overlap. Photoionization (PI) reflectron time‐of‐fight mass spectrometry (ReTOF‐MS) in combination with temperature‐programmed desorption (TPD) holds certain advantages because molecules are identified after sublimation from the matrix into in the gas phase based on distinct ionization energies and sublimation temperatures. In this study, we reveal the detection of 1‐silaglycolaldehyde (HSiOCH2OH), 2‐sila‐acetic acid (H3SiCOOH), and 1,2‐disila‐acetaldehyde (H3SiSiHO)—the silicon analogues of the well‐known glycolaldehyde (HCOCH2OH), acetic acid (H3CCOOH), and acetaldehyde (H3CCHO), in the gas phase after preparation in silane (SiH4)–carbon dioxide ices exposed to energetic electrons and subliming the neutral reaction products formed within the ices into the gas phase.more » « less
An official website of the United States government
